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Abstract

We outline two alternate approaches to predicting the
onset of congestion in a packet switching satellite, and argue
that predictive, rather than reactive, flow control is
necessary for the efficient operation of such a system. The
first method discussed is based on standard, statistical
techniques which are used to periodicaily calculate a
probability of near-term congestion based on arrival rate
statistics. If this probability exceeds a preset threshold, the
satellite would transmit a rate-reduction signal to all active
ground stations. The second method discussed would utilize
a neural network to periodically predict the occurrence of
buffer overflow based on input data which would include,
in addition to arrival rates, the distributions of packet
lengths, source addresses and destination addresses.

. Motivation

Consider a node in a packet switched retwork
characterized by m inbound links and »# outbound links.
Inbound packets are routed over a switching fabric to their
appropriate outbound iinks bascd on their individual
destinatior. addresses. We begin by making the general
assumptions that packet lengths are variable and that we
have no a priori information concerning the statistical nature
of the packet routing patterns.

Let C, represeat the temporal capacity of link i. At any
instant ia time ¢, a link carries an amount of traffic equal to
some fraction », of its total capacity. In what follows, we
define local buffer congestion to be the local conditinn
obtaining when the totality of inbound traffic destined for a
particular outbound link exceeds the capacity of that link.
More formally, local congestion occurs when
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where »9 is the fraction of inbound traffic on link i destined
for transmission on: outbound link ;.

The impact of local congestion on the performance of the
network depends on its magnitude and on the length of time
the condition persists. If we assume that the node contains
some quantity of buffer memory for each outbound link,
then the onset of congestion causes the buffer to fill to
capacity, whereupon newly arriving packets are blocked.
Thus, if blocking is used as a figure of merit, the length of
time a node can sustain local congestion is proporiional to
the amount of buffer memory it supports and the local input
rate. Considerable research has been carried out on
optimizing the amount of memory built into packet-
switching nodes given specific network operating protocols
and performance specifications (cf. [1]).

Because of the stochastic nature of the inbound traffic,
usually with respect to packet arrival rates, service rates,
and destination routing requiremeats, overflows will occur
with some finite probability. Two basic approaches to the
problem are, 1), attempting to estimate the maximum
duration of such events and provide sufficieat buffer to
minimize packet loss, and, 2), 0 use flow control
techniques to minimize the probability of the occurrcace of
overflows.  Typical network architectures incorporate
various combinations of these (and other) methods to
mitigate the effects of congestion. Many packet-oriented
communicetions protocols require the retransmission of
blocked packets, which can lead to the globe! condition of
network congestion, wherein the average packet throughput
delay becomes intolerably large.

It is difficult to efficiently adapt flow control schemes
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designed for low- to moderate-rate terrestrial networks to
links characterized by high bandwidth-delay preducts, such
as high-speed fiber optic links or geostationary satellite
links. In particular, the advent of commercial
communication satellites capable of on-board packet routing
poses serious challenges in efficiently processing packet
iraffic routed through s satellite with the objective of
minimizing botk packet loss and throughput delay.

We consider the former to be the more significant
problem. Common terrestrial protocols recognize the onset
of congestion after the fact through detection of anomalously
high throughput delay and/or traffic blocking. The volume
of packets lcst before this congestion is brought under
control, due to the relatively short length of terrestrial links,
is quite small relative to that which would be lost on the
much longer geostationary Earth-space link. Moreover,
retransmission of lost packet~ from ground stations to the
satellite, again due to the inherently large propagation delay,
can clearly have a severe impact on end-to-end performance
(extremely severe in, for example, the case of go-back-n
ARQ protocols [2]). On the other hand, the in situ
queueing and trapsmission delay suffered by a packet as a
consequence of onboard processing operations would be
relatively inconsequential compared to the unavoidable
propagation delay experienced by the packet. Thus, in this
work, we coasider the main problem to be that of
preventing local congestion (cnboard buffer overflow) and
subsequent packet blocking and loss by attempting to predict
the onset of such a condition prior to its occurrence and
controlling it through a rate-based, feedback control
mechanism.

It should be noted that we do not address the problem of
admission control to the network, which is usually a
function of the call setup procedure. In this work, we deal
with those sessions which have already been admitted. We
operate on the assumption that the true packet rate and
routing distributions of an individual user requesting access
are unknown at the time of call setup, thus the user traffic
characteristics may change during the course of the session,
possibly resulting in congestion.

We outline two approaches to controlling the rate of
irbound (uplink) traffic destined for a particular outbound
link (downlink) in a satellite system architecture supporting
full, destination-directed packet routing and packet
buffering. The first approach centers on statistical
estimation and prediction, while the second is based on
neural networks which capture finite time series behavior.
Both approaches use time-history data on the behavior of the
arrival rate to predict the near-term occurrence of an
overflow, at which time a rate-control (or throsrle) signal is
transmitted by the satellite to each ground station. We

begin by developing a conceptual model of the system
architecture.

II. A System Model

The general description of the packet switching node
given above can be extended and formalized. Owur gosi is
a simple architectural model which is “reasonable” in the
sense that the number of (possibly uarealistic) assumptions
needed concerning its operation is minimal.

As before, we assume that the architecture supports 71
inbound and n outbound links (the distinction is logical, not
physical; that is, the satellite supports m uplink channels
and n downlink channels). We make no assumption at this
point concerning the satellite access method (i.e. TDMA,
FDMA, etc.). The communications payload contains 2
switching fabric capable of routing individual packets from
any uplink to any downlink. Each downlink channel i is
preceded by an amount of store-and-forward buffer b,
(which we will take as fixed, although we do not ruls out
dynamic allocation schemes). Placing the buffer memory
between the routing switch and the downlink channel
circuitry, though necessary to the specific formalism
developed here, is not crucial to the basic approach.

A key requirement of the control mechanisms to be
developed is that the system architecture support a common
signalling channel or priority broadcast mode by which low-
rate flow control commands can be transmitted from the
satellite and received simultaneously by all active ground
stations independently of user traffic.
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Figure 1 schematically illustrates the system model in the
context of a generic switching satellite architecture.

We next turn to 2 fundamental characteristic of any flow
control model, which is the assi:med nature of the behavior
of the traffic arrival stresms. The traditional mathematical
represcatation of packet arivals, the Poisson proress model,
requir=s the assumptions that the interarrival tim. ; between
successive packets are exponentially distributed and that the
key parameters (such as gacket length and destinatiou) of
successive packets are statistically independent. Tlearly,
these assumptions are of questionable value in many (or
ever. ~ost) realistic situations; however, there are occasions
in which they are usually valid. Kleiurock [3], for example,
demonstrated that multiplexing a sufficiently large number
of packet streams arriving from independent sources results
in a composite stream exhibiting Maricovian behavior.
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Fig. 2

The system model proposed can be viewed as a queveing
system as illustrated in Figure 2. Here we represent the
totality of uplink traffic as a single stream which is
demultiplexed (in a sense) by the switching fabric. In other
words, we assume that the switch acts to randomly select
packets and route them to the downlink queues, thus
resulting in »n individual arrival streams exhibiting
Markoviaa behavior (in other words, packets arriving from
independent sources are multiplexed by the switching fabric
and appear at the output of switch in such a way that
successive packets are no longer correlated). Depending on
the actual architecture of the switching fabric, each
downlink channel may well observe a packet stream which
is (very nearly) governed by a Poisson distributios.

The importance of such behavior is most evident in the
construction of steady-state queueing models of network
nodes, particularly in the case of the M/M/1 queue, in
which both the packet arrivals and lengths are governed by
a Poisson distribution with rate parameter A. In the steady-
state, the expected value of the number of puckets in the

buffer is given by

w) = M ®
SR TeT®

wherc A is the average arrival rate and u is the average
packet lensth. Although queueing models have been used
v.ith much success to design communication networks, their
obvious drawback is the requirement that one can typically
deal oniy with steady-=tsie, average behavior. In attempting
to develop a control mechanism tu circumvent congestion,
we are, in fact, almost exclusively concerned with the
transieat behavior of the system (aithough significant work
has been done in the transient behavior of queues, most
tractable aspects of the theory are restricted to steady-state
analyses, cf. [4]),

A some vhat better method of dealing with traffic streams
which do not readily lend themselves to steady-state
treatment is to assume that the arrivals are governed by
nonstationary prooability distributions. In the simplest case
of the stationary Poisson model, the probability that k
packets will arrive within a time interval 7 is given by the
expression

PriK=k] = _‘-_"M 3)
k!
where A is the average packet arrival rate defined by

A= lim,,_E"p’ Alriv:ls i [0,7] (4)

Pragmatically, A is assumed to exist and is generally taken
to be a long-term average of arrival rates of an ergodic
point process, and can vary significantly from shorter-tertu
or rapid fluctuations (characterised by higher-crder
statistics). Longer-term fluctuations are characterized by
more gradual changes in the value of the parameter of the
governing probability distribution.

1f, on the other hand, the arrival process is governed by
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the nonstationary Poisson distribution (i.e. by the
nonhomogeneous Poisson process), the behavior is taken to
result fiom stochastic time-dependency of the average raie
parameter, viz: A = A(t). Notice that A(t) may itself be a
stochastic process of indeterminate statistics. Figure 3
illustrates & typical uncontrolled arrival stream subject to
both types of behavior. Both short and long-term variations
are clearly evident. Formally, the rate parameter A(t) is
defined by

AH = %—f‘l ®)

where A(t) is termed the expectation function and is assumed
to be differentiable at an instant t. The probability of k
ar.ivals occurring in a time interval of lengih 7={t,t+sj is
now

e W MIAGs)-ADF  (6)

Prix=H = K
where
trs
A@t+s) -AQD) = f A(u)du @)
4
or, by substitution,
Trwdaees 4
e | A(u)du (8)
PriK=k} = k:

The motivation here is simply that we hope to realize
bounds on the short-term transients (which are governed by
higher-order statistics), whereas changes in the average rate
parameter A(*), though still of a stochastic nature, will be
driven by a deterministic, underlying structure. Learning
and adapting to this structure is the essence of both the
statistical and neural network feedback control mechanisms
proposed. By developing a mechanism which can learn and
predict the relatively near-term behavior of M(t) and
combining it with a state-variable representation of the
average number of packets in queue at time t, we can
attempt to predict the point at which congestion will occur
and initiate & rate-reduction in the arrival stream. This
approach is only one of mauy filtering and prediction
methods available through classical stochastic control theory;
we choose it for its apparent operational simplicity. We
elaborate on this approsach in Secticn III.

We digress to note ihat it is possible 10 combwe the
time-varying arrival rate with the steady-state M/M/1
quexeing model to derive a state equation describing the
time evolution of the queue length. Filipiak [5] (among

others) matches the steady-state equilibrium point of the
queueing model with that of the dynamic model to obtain the
differential equation

y = - _I(_l_)_+ 9
) u[h 00 ©)

which has the initial condition x(0)=x,. This expression
describes the evolution of the mean number in the queueing
system over time, and does not, in general, account for
short-term transients. However, if A(t) is taken as the
ensemble average of the arrival process and it is known (or
can be shown) that the variance of the process is relatively
small, the state variabie can be a fairly accurate predictor of
the dynamics of the system. If this is the csse, standard
optimal control techniques (Hamilton-Jacobi) can be applied
to the state evolution expression above to derive an optimal
control to minimize the blocking probabilities [6]. We do
not assume here that purely steady-state behavior will be
sufficient to accurately predict the onset of congestion.

Our motivation for examining both statistical and neural
network control mechanisms is that statistical methods are
well-understood anu have been extensively analyzed and
used. Thus, even though stochastic formulations must
necessarily rely on certain working assumnptions (i.e. be
"model-based”), we are at least able to determine when such
assumptions are-- or are not-- valid. On the other hand,
neural networks are not yet well understood; a significant
amount of trial and error testing is usually required to
develop functional prototypes and the underlying theory is
far from comprehensive. Nonetheless, the attraction of
neural networks here lies in their potential for model-frec
estimation and prediction, coupled with their ability to
distinguish patterns and trends which cannot be adequately
captured by probabilistic methods. We begin with a
proposed technique based on statistical estimation and
prediction.

HI. An Approach to Statistical Predictive Control

The basic statistical predictive flow control mechanism
we propose is simply as follows: at time t, predict the
probability of an overflow at time t+s. If the predicted
probability metric exceeds a predefined threshold, transmit
a throttle command to all active ground stations to effect an
immediate reduction in the number of uplink packets
destined for that downlink buffer.

We assume that the packet arrival rate is determined by
counting circuitry at each output of the destinaticn-directed
switch (a sampling mechanism might alsc be used). It
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appears that, due to the digital nature of the system, the
measured value of the packet arrival ratz should be
relatively free of measurement noise, obviating the need for
statistical filtering at that point. If this is not the case, then
optimal filtering techniques (such as the well-known Kalman
filter) must be used. The measured arrival rates represent
the composite transmission rate of all active ground stations
to each particular downlink buffer approximately 125 ms in
the past. The task of our proposed prediction mechanism is
to calculate the probability of congestion within the near-
terra future (for & predefined window), compare that value
with a preset threshold, and trigger the transmission of a
throttle command if the threshold is exceeded. Figure 4
illustrates the algorithmic flow.

Our definition of congestion probability is based on the
nonhomogeneous Pois.on process model described cbove.
As before, let b; be the total amount of buffer available at
the downlink queue and let the amount of buffer in use at
time t be N,. The probability of congestion can be definea
as the probability that more traffic will arrive at the queue
in the interval [¢,t+s5] than can be accommodated, which is
expressed by

-71(1:)&(0«
5N, €' / l(ll)d“]/ (10
P(tt+e) = 1-F . -
j*o

i

Note that, for simplicity, we take the conservative

approach of peglecting <‘epartures from the buffar during the
intervai. Numerical computation of P(t,t+3) is relatively
straigntforward. The problera, them, is in estimating und
predicting the value of A(t) for the near-term window.

The choice of an appropriste prediction scheme is,
unfortunately, rather highly dependeat on the dynamics of
the arriving traffic stream. If the traffic pattern seen at the
downlink queue is relatively homogeneous on, say,
successive days (as is typically the case of interactive
computer use, for example), then it may be convenient to
average the arrival rates over several days and derive a
smooth, polynomial approximation A'(t) of A(t) using a
technique such as maximum likelihood estimation.

On the other hand, if the arrival process is characterized
by large variations over the mean, then basing the estimate
on average values would be insufficiently accurate for
purposes of control. Alternate estimation procedures (of
which there ar= many) must be chosen to take advantage of
any determimsiic structure underlying the arrival process.
Possible choices include the Kalman filter, the Sage-Husa
filler, LMS adaptive filters, and local linear predictive
techniques (cf. [7], [8]).

For example, a simple linear predictor expresses the
value of A'(t) by linear extrapolation through two previous
data points. Thus,

l‘(f)=("fl)[ﬁ%lﬁ_22)+i(rl) (11)

27 %

where i(t) is the measured value of A(t) at 7. A little
elementary calculus gives us that

1+

[ A @
' , (12)
_A@y-iy) (s’ +2s _,,l) +si(x)
T, % 2

In this case, expression (10) can be computed quite simply
either directly or using series approximations.

Although in certain well-behaved cases a linear predictor
can perform quite well, typically higher-order predictors are
necessary. In addition, it is probable that the higher-order
statistics of the arrival stream may have to be takea into
account by the prediction mechanism, which raises several
difficulties in applying a classical probabilistic approach.
The overall objective, of course, is to maximize the

-



efficiency of the prediction mechanism; that is, to
determine P _(t,t +5) such that it exceeds its threshold value
largely when the actual arrival rate will result in an
overflow, and rarely otherwise.

Determination of an approximation function A°(t) of A(t),
though beyond the scope of this paper, is one of the key
factors in the success of the proposed control mechanism.
An important consideration here is the accuracy of the value
of A"(t) within the near-term window-- in other words, how
well does the estimation scheme capture the structure of
short-term fluctuations? Ideally, we wish to minimize the
probability of congestion due to these short term transients.
One possible (and purely speculative) approach to this
problem is to view the short-term transients as yet another
stochastic process, governed by its own set of statistics.
Thus one can envision to separate prediction mechanisms,
one geared to predicting fong-term behavior, the other to
predicting short-term fluctuations.

Several aspects of this scheme will require resolution.
First, the time which must elapse between the transmission
of a throttie command arid its receipt by a ground station is
approximately 125 milliseconds (during which time 125
milliseconds worth of treffic is uplinked to the satellite),
placing a bound oti the minimum prediction window.

Second, we assume that the data avaiiable to the
prediction mechanism will consist of a finite amount of time
series data concerning the arrival rate, distribution of packet
lengths, sources and destinations.

Third, the action cairied out by a ground station upon
receip: of a throttle command is taken to be a (possibly
total) reduction in the transmission of packets destined for
the affected queue (whereupon such packets are buffered at
the ground station, resulting in backpressure along the
terrestrial links to the attached nodes). We should note here
also that a possible consequence of this backpressure is that
upon release of the traffic, the hypothetical Poisson model
may become a batch arrival process and must be treated
differently.

Fourth, the length of time rate reduction is executed at
the ground stations must be resolved. Fifth, and finaily, the
optimal value of the preset probability threshold must be
determined on an application-specific basis by tradiag off
link efficiency and overall quality of service requirements.

[V. Neural Network Predictive Control

Time-serivs prediction using neural networks is a
relatively new and active research area. Notable work in
the prodiction of highly nonlinear (and chaotic) time-senes

has been performed by Jones, et ai. [9], among others.

A 1988 report by Elman [10] describes a simple,
partially recurrent neural network architecture designed to
predict the successive elements in a sequence (i.e which
predicts the state of the sequence at time t+1 given the
current state and the state at time t-1). The key feature of
this architecture is the addition of a hidden layer of aeurons
(termed the contexs layer) which provides the network with
memory. Although developed for applicatica to language
prucessing, the ability of the network to make predictions
based on finite time series appears to constitute an
appropriate basis for the control of packet arrival streams.
Figure 5 schematically illustrates Elman’s neural network
architecture.

OUTAN LAER

Fig. 5

The operation of the network is fairly straightforward.
Ignoring the context layer for the momeut, the input,
hidden, and output 'ayers would function as a simple,
feedforward neural net. B, copying the contents of the
hidden layer back onto the context layer at each time step
(say, at time t), the network stores the state of the hidden
layer at time t. During the t+ 1st processing step, the
context information is propagated back into the hidden layer,
essentially "influencing” the current state with time-history
data from time t. If the network is being trained (Elinzn
utilizes the method of hackpropagation), then the forward
connection weights are adjusted in the standard manner.
The recurrent connections are fixed at unity and are not
affected by the training.

Because the context layer is continually updated by
copies of the current hidden layer, a time-history is
maintained in the network. In particular, even though only
a single context layer is used, historical events that are of
large magnitude (in some sense) can continue to iafluence
the hidden layer over more than a single time siep.

Thus, returning to the problem at hand, the neural net
would serve as a predictor of overflows. A singular
advantage to this approach over the statistical method is the
case of using nor only arrival rates as a basis for predict:cn,
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but also such information-rich data as the distributions of
packet lengths, source addresses, and destination addresses.
In addition, this approach does not require the assumption
of a Markovian arrival stream. Indeed, positive correlations
between successive packets is in itself a sourc: of data
which could be used by an intelligent prediction mechanism;
in fact, Elman’s work in sequence analysis seeks just such
correlative behavior.

Operationally, we envision that the neural network would
be trained with input vectors consisting of the arrival
statistics given above and a binary output vector indicating
whetker or not congestion occurred within the specified
prediction window. Typically, two nearal networks would
operate in tandem, with one undergoing orline training
while the other generates a binary signal corresponding to
its prediction of either an overflow condition or nominal
operation. Output of a value indicating a predicted overflow
condition would, as in the statistical prediction mechanism,
result in transmission of a throttle signal to the active
ground stations.

A ciear advantage to using neural networks for this
approach is that one need not be concerned about formally
discriminating between first and second order arrival
statistics, and by the difficult problem of combining several
distiibutions into a multivariate prediction model. Thus, it
may be possible to devise a much more efficient predictor
using the neural network’s inherent capability to tran on
multivariate input data.

Neural networks are by no means magical, however, and
carcful consideration nwust be given to the appropriate
implementation of such a petwork for the specific
application. As this paper 1s preliminary, we do not yet
have & firm grasp of the precise network architecture that is
required to predict congestion. It does appear, however,
that Elman’s architecture, through its ability to efficiently
use time-history data, offers significant promise in the ares
of recursive estimation.

V. Summary

We outlined two alternate approaches to the predictive
control of traffic arrival to a packet switching satellite. W=
belicve such an approach to controlling congestion is
necessary for the operational efficiency of such systems,
since alowing the loss of earth-to-space pucket traffic wculd
result in serious performance degradation, perhaps causing
the systeia performance to fall below the required quality of
service.

The first approach was based on standard statistical
methods for dealing with traffic flows in computer and
communication networks. A nonstationary distribution was

used to derive a simple expression for the piobability of #
local overflow which could, in theory, be either periodically
or continuously calculated by an onboard processor and
comparsd to preset (and possibly dynamic) thresholds to
initiate transmission of rate control signals to the ground
station population.

The second method suggests using a novel class of neural
network developed by Elman to predict an overflow based
on a number of available traffic arrival statistics, including
the arrival rate and distributions of packet lengths, sovrces,
and destinations. The proposed neural network architecture
utilizes a recurrent context layer of neurons to capture
recent past behavior of the arrival stream and incorporates
this into its {feedforward) predictive output.

Efforts are underway by the author to test the
effectiveness of both methods through the tool of computer-
based simulation. Of interest are not only the practicality of
the methods, but also their robustness to dynamic changes
in the intensity, time-variations, and statistics of the traffic
flow. Preliminary results using the simple linear predictive
non-homogeneous Poisson process for random arrivals based
on quasi-deterministic structures (simple periodic functions
with a uniformly-distributed random component) appesar
promising. Evaluation of the control mechanisms in 2 more
realistic networking scenario has recently begun. The
problem of an effective estimator for A°(t) bas not yet been
addressed.

Potential applications for this work include several
projects underway at NASA Lewis Research Center (such
as the Information Switching Processor and Autonomous
Network Controller) as well as applications to envisioned
future satellite services supporting packet and fast-packet
routing, such as ISDN and B-ISDN.
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